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Abstract
We study the Hankel determinant of the generalized Jacobi weight (x −
t)γ xα(1 − x)β for x ∈ [0, 1] with α, β > 0, t < 0 and γ ∈ R. Based
on the ladder operators for the corresponding monic orthogonal polynomials
Pn(x), it is shown that the logarithmic derivative of the Hankel determinant is
characterized by a Jimbo–Miwa–Okamoto σ -form of the Painlevé VI system.

PACS numbers: 02.30.Gp, 02.10.Yn, 02.30.Hq

1. Introduction and statement of results

Let Pn(x) be the monic polynomials of degree n in x and orthogonal with respect to the
generalized Jacobi weight w(x; t), that is,∫ 1

0
Pm(x)Pn(x)w(x) dx = hnδm,n, hn > 0, m, n = 0, 1, 2, . . . , (1.1)

where

Pn(x) = xn + p1(n)xn−1 + · · · (1.2)

and

w(x) := w(x; t) = (x − t)γ xα(1 − x)β, x ∈ [0, 1], (1.3)

with α, β > 0, t < 0 and γ ∈ R. (In what follows, we often suppress the t-dependence for
brevity. We believe that this will not lead to any confusion.) An immediate consequence of
the orthogonality condition is the three-term recurrence relation

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), (1.4)
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where the ‘initial’ conditions are taken to be P0(x) := 1 and β0P−1(x) := 0. Obviously, when
t → 0−, these polynomials are reduced to the classical Jacobi polynomials up to some shift
and rescaling, whose properties are well known; see [24]. In the literature, although people
may use slightly different definitions, the generalized Jacobi polynomials have been studied
from many points of view; for example, see [14, 15, 21, 25, 26]. In particular, Magnus [19]
showed that an auxiliary quantity occurring in his study satisfies the Painlevé VI equation for
certain parameters.

In this paper, we are concerned with the Hankel determinant for the generalized Jacobi
weight

Dn(t) = det

(∫ 1

0
xj+k w(x; t) dt

)n−1

j,k=0

= 1

n!

∫ 1

0
· · ·

∫ 1

0

∏
i<j

(xi − xj )
2

n∏
k=1

w(xk; t) dxk, (1.5)

with w(x; t) given in (1.3). Our motivation for this research mainly arises from the close
relation between Hankel determinants and random matrix theory, which is of interest in
mathematical physics. Indeed, the Hankel determinant defined in (1.5) can be viewed as the
partition function for the unitary ensemble with eigenvalue distribution∏

i<j

(xi − xj )
2

n∏
k=1

(xk − t)γ xα
k (1 − xk)

β dxk; (1.6)

see the definitive book of Mehta [20] for a discussion of this topic. The main purpose of this
work is to study the properties of Dn(t) as a function of t. More precisely, we are going to
show that the logarithmic derivative of Hankel determinant Dn(t) is characterized by a Jimbo–
Miwa–Okamoto σ -form of the Painlevé VI system. The appearance of Painlevé VI may not
be so surprising somehow. As a matter of fact, it was already known that, for some special
weight functions, the corresponding Hankel determinants are connected to the well-known
nonlinear ordinary differential equations—Painlevé equations. In particular, it is first shown
in [16] that a gap probability in the Jacobi polynomial ensemble is related to Painlevé VI, see
also [7, 13] for further discussion. For the present general Jacobi case, although it is natural
to ‘guess’ the existence of such a link, the precise form and specific quantity to which it is
related to, however, is not clear.

Our approach is based on the ladder operator for orthogonal polynomials, which has been
successfully applied to many other polynomials before; see [2, 3, 8, 10–12]. The main result
is the following.

Theorem 1.1. Let Hn be the logarithmic derivative of the Hankel determinant with respect
to t,

Hn(t) := t (t − 1)
d

dt
ln Dn(t) (1.7)

and denoted by

H̃n := Hn + d1t + d2, (1.8)

with

d1 = −n(n + α + β + γ ) − (α + β)2

4
,

d2 = 1

4
[2n(n + α + β + γ ) + β(α + β) − γ (α − β)].

2
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Then H̃n satisfies the following Jimbo–Miwa–Okamoto σ -form of Painlevé VI in [18, 22]

H̃ ′
n(t (t − 1)H̃ ′′

n )2 +
{
2H̃ ′

n(tH̃
′
n − H̃n) − H̃ ′2

n − ν1ν2ν3ν4
}2

= (
H̃ ′

n + ν2
1

)(
H̃ ′

n + ν2
2

)(
H̃ ′

n + ν2
3

)(
H̃ ′

n + ν2
4

)
, (1.9)

with

ν1 = α + β

2
, ν2 = β − α

2
, ν3 = 2n + α + β

2
, ν4 = 2n + α + β + 2γ

2
.

Remark 1.1. Due to the symmetric form of (1.9), the choice of ν1, ν2, ν3 and ν4 is not unique.

Remark 1.2. Although we assume t < 0 in the definition (1.3) of the weight function w(x),
theorem 1.1 also holds for t > 1 if (x − t)γ is substituted by (t − x)γ . One may expect this
theorem is valid for all real t �= 0, 1 when (x − t)γ is replaced by |x − t |γ , which is similar
to what has been studied by Chen and Feigin [9]. Unfortunately, we cannot prove it at this
moment.

Remark 1.3. If γ = 0, then (x − t)γ ≡ 1 and we can readily reduce the polynomials
Pn(x) in (1.1) to the classical Jacobi polynomials, which are of course t independent. As a
consequence, the formula (1.8) provides a trivial solution for the associated σ -form in (1.9).
Moreover, if γ = 1, the Hankel determinant Dn(t) defined in (1.5) is actually a polynomial in
t of degree n and orthogonal with respect to the ‘shifted’ Jacobi weight tα(1− t)β on [0, 1]. By
the classical theory of Jacobi polynomials (cf [24]), Dn(t) satisfies the following second-order
differential equation:

t (1 − t)D′′
n − [(2 + α + β)t − α − 1]D′

n + n(n + α + β + 1)Dn = 0. (1.10)

Hence, if we denote by u(t) := d
dt

ln Dn(t), it is easily seen that u(t) is a solution of the
following Riccati equation:

t (1 − t)u′ = t (t − 1)u2 + [(2 + α + β)t − α − 1]u − n(n + α + β + 1) (1.11)

for t < 0 in this special case. In addition, one can verify that t (t − 1)u(t) + d1t + d2 is a
rational solution to the associated σ -form in (1.9).

From (1.4), it is easily seen that βn = hn/hn−1. Since

Dn(t) =
n−1∏
j=0

hj (1.12)

(see equation (2.1.6) in [17]), we can express βn in terms of the Hankel determinant as follows:

βn = Dn−1Dn+1

D2
n

. (1.13)

Therefore, it is also expected that there exists a certain relation between βn and the Painlevé
VI equation. Indeed, as a by-product of our main theorem, we find a first-order differential
equation for βn, whose coefficient is closely related to the Painlevé VI equation.

Theorem 1.2. The recurrence coefficient βn satisfies a first-order differential equation as
follows:

t
d

dt
βn = (2 + Rn−1 − Rn) βn, (1.14)

where Rn is related to the Painlevé VI equation in the following way. Let

Wn(t) := (t − 1)Rn(t)

2n + α + β + γ + 1
+ 1. (1.15)

3
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Then Wn(t) satisfies the Painlevé VI equation

W ′′
n = 1

2

(
1

Wn

+
1

Wn − 1
+

1

Wn − t

)
(W ′

n)
2 −

(
1

t
+

1

t − 1
+

1

Wn − t

)
W ′

n

+
Wn(Wn − 1)(Wn − t)

t2(t − 1)2

(
μ1 +

μ2t

W 2
n

+
μ3(t − 1)

(Wn − 1)2
+

μ4t (t − 1)

(Wn − t)2

)
, (1.16)

with

μ1 = (2n + α + β + γ + 1)2

2
, μ2 = −α2

2
, μ3 = β2

2
, μ4 = 1 − γ 2

2
.

The present paper is organized as follows. In section 2, we give a brief introduction to the
ladder operator theory and state three compatibility conditions S1, S2 and S ′

2. Based on these
supplementary conditions, we introduce some auxiliary constants in section 3. Their relations
with other quantities such as the coefficient of orthogonal polynomials, Hankel determinant,
etc are also derived for further use. We conclude this paper with the proof of theorems 1.1 and
1.2 in sections 4 and 5, respectively.

2. Ladder operators and compatibility conditions

The ladder operators for orthogonal polynomials have been derived by many authors with a
long history, we refer to [4–6, 11, 23] and references therein for a quick guide. Following the
general set-up (see for example [11]), we have the lowering and raising ladder operator for
our generalized Jacobi polynomials Pn(z):(

d

dz
+ Bn(z)

)
Pn(z) = βnAn(z)Pn−1(z), (2.1)

(
d

dz
− Bn(z) − v′(z)

)
Pn−1(z) = −An−1(z)Pn(z), (2.2)

with v(z) := − ln w(z) and

An(z) := 1

hn

∫ 1

0

v′(z) − v′(y)

z − y
[Pn(y)]2w(y) dy, (2.3)

Bn(z) := 1

hn−1

∫ 1

0

v′(z) − v′(y)

z − y
Pn−1(y)Pn(y)w(y) dy. (2.4)

Note that An(z) and Bn(z) are not independent but satisfy the following supplementary
conditions.

Proposition 2.1. The functions An(z) and Bn(z) defined in (2.3) and (2.4) satisfy the following
compatibility conditions:

Bn+1(z) + Bn(z) = (z − αn)An(z) − v′(z), (S1)

1 + (z − αn)[Bn+1(z) − Bn(z)] = βn+1An+1(z) − βnAn−1(z). (S2)

Proof. Using the recurrence relation and the Christoffel–Darboux formulas, all the formulas
(2.1), (2.2), (S1) and (S2) can be derived by direct calculations. We refer to [4–6, 23] for
details. Also, see [10, 11] for a recent proof. �

4
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From (S1) and (S2), we can derive another identity involving
∑n−1

j=0 Aj which is very
helpful in our subsequent analysis. We state the result in the following proposition.

Proposition 2.2.

B2
n(z) + v′(z)Bn(z) +

n−1∑
j=0

Aj(z) = βnAn(z)An−1(z). (S ′
2)

Proof. See the proof of theorem 2.2 in [8]. �

The conditions S1, S2 and S ′
2 are usually called the compatibility conditions for the ladder

operators, which will play an important role in our future analysis. Although the author
obtained an equivalent form of S ′

2 in [19], he did not study it further. We would also like
to emphasize that, as in [8], the condition S2 is essential in the present case (see remark 3.1
below), while in [2, 3], only the conditions S1 and S ′

2 are sufficient to derive all the relations.

3. The analysis of the ladder operators

3.1. Some auxiliary constants

To prove our results stated in section 1, we would like to introduce some auxiliary constants
first. For the weight function w(z) given in (1.3), we know

v(z) := − ln w(z) = −α ln z − β ln(1 − z) − γ ln(z − t). (3.1)

Hence,

v′(z) = −α

z
− β

z − 1
− γ

z − t
(3.2)

and
v′(z) − v′(y)

z − y
= α

zy
+

β

(z − 1)(y − 1)
+

γ

(z − t)(y − t)
. (3.3)

Since the right-hand side of the above formula is rational in z, it is easily seen that both An(z)

and Bn(z) are also rational in z from their definitions in (2.3) and (2.4). More precisely, we
have the following lemma.

Lemma 3.1. We have

An(z) = R∗
n

z
− Rn

z − 1
+

Rn − R∗
n

z − t
, (3.4)

Bn(z) = r∗
n

z
− rn

z − 1
+

rn − r∗
n − n

z − t
, (3.5)

where

R∗
n := α

hn

∫ 1

0
[Pn(y)]2w(y)

dy

y
, (3.6)

Rn := β

hn

∫ 1

0
[Pn(y)]2w(y)

dy

1 − y
, (3.7)

r∗
n := α

hn−1

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

y
, (3.8)

5
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rn := β

hn−1

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

1 − y
. (3.9)

Proof. Inserting (3.3) into (2.3) gives us

An(z) = 1

hn

[
α

z

∫ 1

0
[Pn(y)]2w(y)

dy

y
+

β

z − 1

∫ 1

0
[Pn(y)]2w(y)

dy

y − 1

+
γ

z − t

∫ 1

0
[Pn(y)]2w(y)

dy

y − t

]
. (3.10)

Applying integration by parts, we obtain∫ 1

0
[Pn(y)]2w(y)v′(y) dy = −

∫ 1

0
[Pn(y)]2 dw(y) =

∫ 1

0
2P ′

n(y)Pn(y)w(y) dy = 0. (3.11)

On account of (3.2) and the above formula, we have

γ

∫ 1

0
[Pn(y)]2w(y)

dy

y − t
= β

∫ 1

0
[Pn(y)]2w(y)

dy

1 − y
− α

∫ 1

0
[Pn(y)]2w(y)

dy

y
. (3.12)

A combination of (3.10) and (3.12) yields (3.4).
In a similar manner, we get (3.5) from (2.4). In that case, we need to make use of the

following equality:

γ

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

y − t
= −nhn−1 − α

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

y

+ β

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

1 − y
. (3.13)

�

In view of the compatibility conditions (S1), (S2) and (S ′
2), one can derive the following

relations among the four auxiliary quantities Rn,R
∗
n, rn, r

∗
n .

Proposition 3.1. From (S1), we obtain the following equations:

r∗
n+1 + r∗

n = α − αnR
∗
n, (3.14)

rn+1 + rn = (1 − αn)Rn − β, (3.15)

tR∗
n − (t − 1)Rn = 2n + 1 + α + β + γ, (3.16)

where the constants Rn, R∗
n, rn and r∗

n are defined in (3.6), (3.7), (3.8) and (3.9), respectively.

Proof. Substituting (3.4) and (3.5) into (S1), we have

Bn+1(z) + Bn(z) = r∗
n+1 + r∗

n

z
− rn+1 + rn

z − 1
+

rn+1 + rn − r∗
n+1 − r∗

n − 2n − 1

z − t
(3.17)

and

(z − αn)An(z) − v′(z) = (z − αn)

[
R∗

n

z
− Rn

z − 1
+

Rn − R∗
n

z − t

]
+

α

z
+

β

z − 1
+

γ

z − t

= α − αnR
∗
n

z
− (1 − αn)Rn − β

z − 1
+

(t − αn)(Rn − R∗
n) + γ

z − t
. (3.18)

Comparing the coefficients at O(z−1), O((z − 1)−1) and O((z − t)−1) in the above two
formulas, we get

6
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r∗
n+1 + r∗

n = α − αnR
∗
n, (3.19)

rn+1 + rn = (1 − αn)Rn − β, (3.20)

rn+1 + rn − r∗
n+1 − r∗

n − 2n − 1 = (t − αn)(Rn − R∗
n) + γ. (3.21)

A combination of the above three formulas gives our proposition. �

Proposition 3.2. From (S ′
2), we have the following equations:

(r∗
n)2 − αr∗

n = βnR
∗
nR

∗
n−1, (3.22)

r2
n + βrn = βnRnRn−1, (3.23)

(2n + β + γ )rn − (2n + α + γ )r∗
n + 2rnr

∗
n − n(n + γ ) = βn(Rn−1R

∗
n + RnR

∗
n−1) (3.24)

and
n−1∑
j=0

Rj = (2n + α + β + γ )(rn − r∗
n) − n(n + γ )

+
(2n + α + β + γ )r∗

n + n(n + β + γ )

1 − t
, (3.25)

where the constants Rn, R∗
n, rn and r∗

n are defined in (3.6), (3.7), (3.8) and (3.9), respectively.

Proof. Again we substitute (3.4) and (3.5) into (S ′
2) to obtain

B2
n(z) + v′(z)Bn(z) +

n−1∑
j=0

Aj(z) = (r∗
n)2 − αr∗

n

z2
+

r2
n + βrn

(z − 1)2
+

(rn − r∗
n − n)(rn − r∗

n − n − γ )

(z − t)2

+
αrn − βr∗

n − 2rnr
∗
n

z(z − 1)
+

(rn − r∗
n − n)(2r∗

n − α) − γ r∗
n

z(z − t)

− (rn − r∗
n − n)(2rn + β) − γ rn

(z − 1)(z − t)
+

n−1∑
j=0

[
R∗

j

z
− Rj

z − 1
+

Rj − R∗
j

z − t

]
(3.26)

and

βnAn(z)An−1(z) = βnR
∗
nR

∗
n−1

z2
+

βnRnRn−1

(z − 1)2
+

βn(Rn − R∗
n)(Rn−1 − R∗

n−1)

(z − t)2

− βn(R
∗
nRn−1 + RnR

∗
n−1)

z(z − 1)
+

βn(R
∗
nRn−1 − 2R∗

nR
∗
n−1 + RnR

∗
n−1)

z(z − t)

+
βn(RnR

∗
n−1 − 2RnRn−1 + Rn−1R

∗
n)

(z − 1)(z − t)
. (3.27)

Equating the coefficients of the above two formulas at O(z−2), O((z−1)−2) and O((z− t)−2),
we get (3.22), (3.23) and

(rn − r∗
n − n)(rn − r∗

n − n − γ ) = βn(Rn − R∗
n)(Rn−1 − R∗

n−1), (3.28)

respectively. A substitution of (3.22) and (3.23) into the above formula gives us (3.24). At
O((z − 1)−1), note that

1

z
= 1 + O(z − 1),

1

z − t
= 1

1 − t
+ O(z − 1), as z → 1.

7
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It then follows from (3.26) and (3.27) that

−2rnr
∗
n − βr∗

n + αrn −
n−1∑
j=0

Rj − (rn − r∗
n − n)(2rn + β) − γ rn

1 − t

= −βn

[
RnR

∗
n−1 + Rn−1R

∗
n +

−RnR
∗
n−1 + 2RnRn−1 − Rn−1R

∗
n

1 − t

]
. (3.29)

Combining (3.24) and the above formula, we have
n−1∑
j=0

Rj = (2n + α + β + γ )(rn − r∗
n) − n(n + γ )

+
2βnRnRn−1 + (2n + α + β + γ )r∗

n + n(n + β + γ ) − 2r2
n − 2βrn

1 − t
. (3.30)

Eliminating βnRnRn−1 in (3.30) with the aid of (3.23), we finally obtain (3.25). �

Remark 3.1. From another condition (S2), we get one more equation as follows:

(t − 1)(rn+1 − rn) − t (r∗
n+1 − r∗

n) − t + αn = 0. (3.31)

Rewriting the above formula yields

αn = t (r∗
n+1 − r∗

n) − (t − 1)(rn+1 − rn) + t. (3.32)

Since it follows from (1.2) and (1.4) that

αn = p1(n) − p1(n + 1), n = 0, 1, 2, . . . , (3.33)

with p1(0) := 0; hence, it is easily seen

−
n−1∑
j=0

αj = p1(n). (3.34)

Inserting (3.32) into the above formula, we obtain

p1(n) = (t − 1)rn − tr∗
n − nt, (3.35)

where we have made use of the initial conditions r0(t) = r∗
0 (t) := 0.

3.2. The recurrence coefficients

Not only the coefficients An(z) and Bn(z) of the ladder operators in (2.1) and (2.2) but also
the recurrence coefficients αn and βn in (1.4) can be written in terms of the auxiliary quantities
Rn, rn and r∗

n . Here we do not need R∗
n since it is related to Rn in a simple way; see (3.16).

Lemma 3.2. The recurrence coefficients αn and βn are expressed in terms of Rn, rn and r∗
n

as follows:

(2n + 2 + α + β + γ )αn = 2(t − 1)rn − 2tr∗
n + (1 − t)Rn + (α + β + 1)t − β (3.36)

and

(2n − 1 + α + β + γ )(2n + 1 + α + β + γ )βn = [tr∗
n − (t − 1)rn]2

− (t − 1)(2nt + γ t + β)rn + t[(t − 1)(2n + γ ) − α]r∗
n + n(n + γ )(t2 − t).

(3.37)

Proof. We use (3.14) and (3.15) to eliminate r∗
n+1 and rn+1 in (3.31) and get

[1 + tR∗
n − (t − 1)Rn]αn = t (α − 2r∗

n ) − (t − 1)(Rn − β − 2rn) + t. (3.38)

Substituting (3.16) into the above formula immediately gives us (3.36).
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To derive the formula for βn, we need to consider the identities in proposition 3.2.
Multiplying both sides of (3.22) by t2 and eliminating t2R∗

nR
∗
n−1 with the aid of (3.16), we

have

t2((r∗
n)2 − αr∗

n) = (t − 1)βn[(t − 1)Rn−1Rn + cn−1Rn + cnRn−1] + cn−1cnβn, (3.39)

where cn := 2n + 1 + α + β + γ . Similarly, we multiply both sides of (3.24) by t and use (3.16)
again to get

t[(2n + β + γ )rn − (2n + α + γ )r∗
n + 2rnr

∗
n − n(n + γ )]

= βn[2(t − 1)Rn−1Rn + cn−1Rn + cnRn−1].

On account of (3.23), it is readily derived from the above formula that

t[(2n + β + γ )rn − (2n + α + γ )r∗
n + 2rnr

∗
n − n(n + γ )] − (t − 1)

(
r2
n + βrn

)
= βn[(t − 1)Rn−1Rn + cn−1Rn + cnRn−1]. (3.40)

Substituting (3.40) into (3.39) yields (3.37). �

Remark 3.2. For n = 0, from (1.4) and the definitions of R0(t), r0(t) and r∗
0 (t), it follows

that

α0(t) = (α + 1) 2F1
(
α + 2,−γ, α + β + 3; 1

t

)
(α + β + 2) 2F1

(
α + 1,−γ, α + β + 2; 1

t

) ,

R0(t) = (α + β + 1) 2F1
(
α + 1,−γ, α + β + 1; 1

t

)
2F1

(
α + 1,−γ, α + β + 2; 1

t

) ,

r0(t) = r∗
0 (t) = 0,

where 2F1 is the hypergeometric function; see [1, p 556]. The validity of (3.36) at n = 0 can
be verified directly from the above formulas.

Furthermore, it is easily seen that

R0(t) = α + β + 1 + O(1/t), (3.41)

as t → −∞.

3.3. The t dependance

Recall that our weight function depends on t; therefore, all of the quantities considered in
this paper such as the coefficient of generalized Jacobi polynomials, Hankel determinant, etc
can be viewed as functions in t. In this subsection, we will investigate their dependance with
respect to this parameter. We start with the study the coefficient p1(n) in (1.2).

Lemma 3.3. We have
d

dt
p1(n) = rn − r∗

n − n. (3.42)

Proof. From the orthogonal property (1.1), we know∫ 1

0
Pn(x)Pn−1(x)w(x; t) dx = 0.

Note that Pn(x) is also dependent on t. Taking derivative of the above formula with respect to
t gives us ∫ 1

0

d

dt
Pn(x) Pn−1(x)w(x; t) dx +

∫ 1

0
Pn(x)Pn−1(x)

d

dt
w(x; t) dx = 0.

9
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It then follows from (1.1) to (1.3) that

hn−1
d

dt
p1(n) − γ

∫ 1

0
Pn(x)Pn−1(x)w(x)

dx

x − t
= 0.

Combining (3.8), (3.9) and (3.13), we get (3.42) immediately. �

By (3.35) and the above lemma, it is easily seen that

d

dt
p1(n) = rn − r∗

n − n = rn + (t − 1)
d

dt
rn − r∗

n − t
d

dt
r∗
n − n. (3.43)

Hence, we obtain the following nice relation between the derivatives of rn and r∗
n :

t
d

dt
r∗
n = (t − 1)

d

dt
rn. (3.44)

Next, we derive the following property about the Hankel determinant Dn(t).

Lemma 3.4. We have

t
d

dt
ln Dn(t) = n(n + α + β + γ ) −

n−1∑
j=0

Rj , (3.45)

where Rj is defined in (3.7).

Proof. Differentiating (1.1) with respect to t yields

h′
n = −γ

∫ 1

0
[Pn(x)]2w(x)

dx

x − t
. (3.46)

This, together with (3.6), (3.7) and (3.12) implies

h′
n = hn(R

∗
n − Rn). (3.47)

Using (3.16) to replace R∗
n by Rn, we find

t
d

dt
ln hn = 2n + 1 + α + β + γ − Rn. (3.48)

Then, a combination of (3.48) and (1.12) gives us (3.45). �

Finally, we derive differential equations for the recurrence coefficients αn and βn. They
are the non-standard Toda equations.

Lemma 3.5. The recurrence coefficients αn and βn satisfy the following differential equations:

t
d

dt
αn = αn + rn − rn+1, (T1)

t
d

dt
βn = (2 + Rn−1 − Rn)βn, (T2)

where Rn and rn are defined in (3.7) and (3.9), respectively.

Proof. Applying t d
dt

to both sides of (3.33), we have from (3.42)

t
d

dt
αn = t (rn − r∗

n − n) − t (rn+1 − r∗
n+1 − n − 1).

(T1) then follows from (3.31) and the above formula. Using (3.48), it is readily seen that

t
d

dt
ln

hn

hn−1
= 2 + Rn−1 − Rn.

Note that βn = hn/hn−1, one easily gets (T2) from the above formula. �
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4. Proof of theorem 1.1

Now we are ready to prove our main theorem. The idea is to make use of lemma 3.4 to express
r∗
n and rn in terms of Hn and its derivative with respect to t. Then we derive two independent

formulas for Rn in terms of r∗
n and rn with the aid of (3.37) and (T2). Equating these two

formulas, finally we obtain an equation involving Hn, H ′
n and H ′′

n . We first need the following
proposition for rn and r∗

n .

Proposition 4.1.

r∗
n = −n(n + β + γ ) + (t − 1)H ′

n − Hn

2n + α + β + γ
, (4.1)

rn = n(n + α + γ ) − tH ′
n + Hn

2n + α + β + γ
. (4.2)

Proof. Recalling the definition of Hn in (1.7), we substitute (3.25) into (3.45) and get

Hn = [n(2n + α + β + 2γ ) − (2n + α + β + γ )(rn − r∗
n)](t − 1)

+ (2n + α + β + γ )r∗
n + n(n + β + γ ). (4.3)

Taking a derivative of the above formula with respect to t, it then follows from (3.44) that

(t − 1)H ′
n − Hn = −n(n + β + γ ) − (2n + α + β + γ )r∗

n , (4.4)

which gives us (4.1). Eliminating r∗
n from the above two formulas, we get (4.2). �

Next we derive a proposition for Rn as follows.

Proposition 4.2. The auxiliary quantity Rn has the following representations:

Rn(t) = (2n + 1 + α + β + γ )[l(rn, r
∗
n , t) − t (1 − t)r ′

n(t)]

2k(rn, r∗
n , t)

, (4.5)

1

Rn(t)
= l(rn, r

∗
n , t) + t (1 − t)r ′

n(t)

2(2n + 1 + α + β + γ )(β + rn)rn

, (4.6)

where

l(rn, r
∗
n , t) := 2(1 − t)r2

n + [(2n − β + γ )t + 2β + 2tr∗
n ]rn

− (2n + α + γ )tr∗
n − n(n + γ )t (4.7)

and

k(rn, r
∗
n , t) := [tr∗

n − (t − 1)rn]2 − (t − 1)(2nt + γ t + β)rn

+ t[(t − 1)(2n + γ ) − α]r∗
n + n(n + γ )(t2 − t). (4.8)

Proof. Using (3.23), we eliminate Rn−1 in (3.40) and obtain

(2n + 1 + α + β + γ )
r2
n + β rn

Rn

+ (2n − 1 + α + β + γ )βnRn

= t[(2n + β + γ )rn − (2n + α + γ )r∗
n + 2rnr

∗
n − n(n + γ )] − 2(t − 1)(r2

n + βrn).
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Replacing βn in the above formula with the aid of (3.37), we have

2n + 1 + α + β + γ

Rn

(
r2
n + βrn

)
+

k(rn, r
∗
n , t)

2n + 1 + α + β + γ
Rn

= 2(1 − t)r2
n + [(2n − β + γ )t + 2β + 2r∗

n t]rn

− (2n + α + γ )tr∗
n − n(n + γ )t. (4.9)

On the other hand, by applying t d
dt

to (3.37), it follows

(2n − 1 + α + β + γ )(2n + 1 + α + β + γ )t
d

dt
βn

= t

[
2t (r∗

n)2 + 2(1 − 2t)rnr
∗
n + 2(t − 1)r2

n + (2n − β + γ − (4n + 2γ )t)rn

− (2n + α + γ − (4n + 2γ )t)r∗
n − (t − 1)(2nt + γ t + β)

d

dt
rn

+ t ((t − 1)(2n + γ ) − α)
d

dt
r∗
n + n(n + γ )(2t − 1)

]
,

where we have used (3.44). A further substitution of (3.23), (3.37) and (T2) into the above
formula yields

(2n − 1 + α + β + γ )(2n + 1 + α + β + γ )

Rn

(
r2
n + βrn

) − k(rn, r
∗
n , t)Rn

= 2(t − 1)r2
n − [(2n − β + γ )t + 2β + 2r∗

n t]rn + (2n + α + γ )tr∗
n

+ n(n + γ )t + t (1 − t)(2n + α + β + γ )
d

dt
rn. (4.10)

Formulas (4.5) and (4.6) now follow from solving for Rn and 1/Rn from (4.9) and (4.10). �

Now we are ready to finish the proof of theorem 1.1.

Proof of theorem 1.1. Multiplying (4.5) and (4.6) gives us

t2(t − 1)2[r ′
n(t)]

2 = l2(rn, r
∗
n , t) − 4k(rn, r

∗
n , t)(β + rn)rn, (4.11)

where l(rn, r
∗
n , t) and k(rn, r

∗
n , t) are given in (4.7) and (4.8), respectively. Recall that r∗

n and
rn can be written in terms of Hn and H ′

n, see (4.1) and (4.2). Therefore, the above formula
actually gives us a nonlinear differential equation for Hn. Using (1.8) to replace Hn by H̃n, we
finally get (1.9), which completes the proof of our theorem. �

5. Proof of theorem 1.2

We conclude this paper with the proof of theorem 1.2.

Proof of theorem 1.2. Firstly, we try to express r∗
n in terms of rn, r ′

n, Rn and R′
n. To achieve

this, we substitute (3.36) into (T1) and get an equation involving rn, r ′
n, r∗

n , r∗
n

′, R′
n and rn+1.

Then we use (3.15) and (3.44) to eliminate rn+1 and r∗
n

′. At the end, we arrive at

r∗
n = 1

2
+

1

2Rn

((t − 1)R′
n − 2rn − (α + β + 1)) +

1

2tRn

((2n + α + β + γ + 2)(2rn − Rn + β)

+ (Rn + 1)[2(t − 1)rn − (t − 1)Rn + (α + β + 1)t − β]). (5.1)

Next, we insert the above formula into (4.5) and (4.6) and obtain a pair of linear equations
in rn and r ′

n. Solving this linear system gives us

rn = F(Rn,R
′
n) and r ′

n = G(Rn,R
′
n), (5.2)

12
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where F(·, ·) and G(·, ·) are functions that can be explicitly computed. Because the expressions
are too complicated, we have decided not to write them down. Due to the fact that
d
dt

F (Rn, R
′
n) = r ′

n = G(Rn,R
′
n), it can be shown that[

(2n + α + β + γ )(2n + α + β + γ + 1) + ((2n + α + β + γ + 1)t

− 2(2n + α + β + γ ) − 1)Rn(t) − (t − 1)R2
n(t)

+ t (t − 1)R′
n(t)

]
�(Rn,R

′
n, R

′′
n) = 0, (5.3)

where �(·, ·, ·) is a functions that is explicitly known. Obviously, the above formula yields two
differential equations. One is a first-order differential equation, actually a Riccati equation,
whose solution is given by

Rn(t) = (2n + α + β + γ + 1)(1 + λ(2n + α + β + γ + 1)(1 − t)2n+α+β+γ )

1 + λ(2n + α + β + γ + 1)(1 − t)2n+α+β+γ +1
, (5.4)

where λ is an integration constant. However, as t → −∞, it is easily seen that

Rn(t) →
{

0, if λ �= 0
2n + α + β + γ + 1, if λ = 0,

(5.5)

which violates the result R0(t) ∼ α + β + 1 in (3.41). So we discard this Riccati equation.
Finally, applying a suitable rescaling and displacement as given in (1.15), we obtain the

Painlevé VI equation (1.16) from �(·, ·, ·) = 0 in (5.3), and this completes the proof of our
theorem. �
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